The Stanford LittleDog: A learning and rapid replanning approach to quadruped locomotion

نویسندگان

  • J. Zico Kolter
  • Andrew Y. Ng
چکیده

Legged robots offer the potential to navigate a wide variety of terrains that are inaccessible to wheeled vehicles. In this paper we consider the planning and control tasks of navigating a quadruped robot over a wide variety of challenging terrain, including terrain which it has not seen until run-time. We present a software architecture that makes use of both static and dynamic gaits, as well as specialized dynamic maneuvers, to accomplish this task. Throughout the paper we highlight two themes that have been central to our approach: 1) the prevalent use of learning algorithms, and 2) a focus on rapid recovery and replanning techniques; we present several novel methods and algorithms that we developed for the quadruped and that illustrate these two themes. We evaluate the performance of these different methods, and also present and discuss the performance of our system on the official Learning Locomotion tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning, planning, and control for quadruped locomotion over challenging terrain

We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstra...

متن کامل

Free LittleDog!: Towards Completely Untethered Operation of the LittleDog Quadruped

The LittleDog robot is a 12 degree-of-freedom quadruped developed by Boston Dynamics and selected for use in the DARPA Learning Locomotion program, in which machine learning is applied to develop controllers capable of navigating rocky terrain. Presently, it is typically constrained to operate within wireless range of a host desktop computer and within a fixed workspace surrounded by a motion c...

متن کامل

Optimization and learning for rough terrain legged locomotion

We present a novel approach to legged locomotion over rough terrain that is thoroughly rooted in optimization. This approach relies on a hierarchy of fast, anytime algorithms to plan a set of footholds, along with the dynamic body motions required to execute them. Components within the planning framework coordinate to exchange plans, cost-to-go estimates, and “certificates” that ensure the outp...

متن کامل

Dynamic Gaits and Control in Flexible Body Quadruped Robot

Legged robots are highly attractive for military purposes such as carrying heavy loads on uneven terrain for long durations because of the higher mobility they give on rough terrain compared to wheeled vehicles/robots. Existing state-of-the-art quadruped robots developed by Boston Dynamics such as LittleDog and BigDog do not have flexible bodies. It can be easily seen that the agility of quadru...

متن کامل

Robot and locomotion-controller design optimization for a reconfigurable quadruped

We present an automated approach to robot and locomotion-controller design optimization, using reinforcement learning methods that have been successfully demonstrated to teach a real prototype quadruped various walking gaits. The same machine learning methods are used here for a different purpose: to optimize robot and locomotion-controller design. Optimization can be used before or after build...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011